Let $ABCDEFGHIJ$ be a regular $10$-gon. Let $T$ be a point inside the $10$-gon, such that the $DTE$ is isosceles: $DT = ET$ , and its angle at the apex is $72^\circ$. Prove that there exists a point $S$ such that $FTS$ and $HIS$ are both isosceles, and for both of them the angle at the apex is $72^\circ$.