Problem

Source: Last round of the Bulgarian Mathematical Oympiad 2009

Tags: algebra, polynomial, algebra proposed



Let $ n\ge 3$ be a natural number. Find all nonconstant polynomials with real coeficcietns $ f_{1}\left(x\right),f_{2}\left(x\right),\ldots,f_{n}\left(x\right)$, for which \[ f_{k}\left(x\right)f_{k+ 1}\left(x\right) = f_{k +1}\left(f_{k + 2}\left(x\right)\right), \quad 1\le k\le n,\] for every real $ x$ (with $ f_{n +1}\left(x\right)\equiv f_{1}\left(x\right)$ and $ f_{n + 2}\left(x\right)\equiv f_{2}\left(x\right)$).