Problem

Source: BxMO 2022, Problem 3

Tags: geometry, BxMO



Let $ABC$ be a scalene acute triangle. Let $B_1$ be the point on ray $[AC$ such that $|AB_1|=|BB_1|$. Let $C_1$ be the point on ray $[AB$ such that $|AC_1|=|CC_1|$. Let $B_2$ and $C_2$ be the points on line $BC$ such that $|AB_2|=|CB_2|$ and $|BC_2|=|AC_2|$. Prove that $B_1$, $C_1$, $B_2$, $C_2$ are concyclic.