Problem

Source: BxMO 2022, Problem 1

Tags: BxMO, algebra, polynomial



Let $n\geqslant 0$ be an integer, and let $a_0,a_1,\dots,a_n$ be real numbers. Show that there exists $k\in\{0,1,\dots,n\}$ such that $$a_0+a_1x+a_2x^2+\cdots+a_nx^n\leqslant a_0+a_1+\cdots+a_k$$for all real numbers $x\in[0,1]$.