Problem

Source: 239-School Open Olympiad (Senior Level)

Tags: number theory, primes, Natural Numbers



Vasya has a calculator that works with pairs of numbers. The calculator knows hoe to make a pair $(x+y,x)$ or a pair $(2x+y+1,x+y+1)$ from a pair $(x,y).$ At the beginning, the pair $(1,1)$ is presented on the calculator. Prove that for any natural $n$ there is exactly one pair $(n,k)$ that can be obtained using a calculator.