rightways wrote:
For positive reals $a,b,c$ with $\sqrt{a}+\sqrt{b}+\sqrt{c}\ge 3$ prove that
$$\frac{a^3}{a^2+b}+\frac{b^3}{b^2+c}+\frac{c^3}{c^2+a}\ge \frac{3}{2}$$
For positive reals $a,b,c$ with $\sqrt{a}+\sqrt{b}+\sqrt{c}\ge 3$ prove that
$$\frac{a^k}{a^2+b}+\frac{b^k}{b^2+c}+\frac{c^k}{c^2+a} \ge \frac{3}{2}$$Where $3\leq k\in N^+.$