Problem

Source: Bulgaria NMO 2022 P6

Tags: combinatorics, disjoint subsets



Let $n\geq 2$ be a positive integer. The sets $A_{1},A_{2},\ldots, A_{n}$ and $B_{1},B_{2},\ldots, B_{n}$ of positive integers are such that $A_{i}\cap B_{j}$ is non-empty $\forall i,j\in\{1,2,\ldots ,n\}$ and $A_{i}\cap A_{j}=\o$, $B_{i}\cap B_{j}=\o$ $\forall i\neq j\in \{1,2,\ldots, n\}$. We put the elements of each set in a descending order and calculate the differences between consecutive elements in this new order. Find the least possible value of the greatest of all such differences.