Problem

Source: 2018 Thailand TST 2.2

Tags: number theory, combinatorics, Sets, Subsets



For finite sets $A,M$ such that $A \subseteq M \subset \mathbb{Z}^+$, we define $$f_M(A)=\{x\in M \mid x\text{ is divisible by an odd number of elements of }A\}.$$Given a positive integer $k$, we call $M$ k-colorable if it is possible to color the subsets of $M$ with $k$ colors so that for any $A \subseteq M$, if $f_M(A)\neq A$ then $f_M(A)$ and $A$ have different colors. Determine the least positive integer $k$ such that every finite set $M \subset\mathbb{Z}^+$ is k-colorable.