Problem

Source: Bulgaria NMO 2022 P3

Tags: number theory, coprime numbers, Perfect Square



Let $x>y>2022$ be positive integers such that $xy+x+y$ is a perfect square. Is it possible for every positive integer $z$ from the interval $[x+3y+1,3x+y+1]$ the numbers $x+y+z$ and $x^2+xy+y^2$ not to be coprime?