Let $x, y, z$ be positive reals such that $xyz = 1$. Prove that $$\sum_{cyc} \frac{1}{\sqrt{x+2y+6}}\leq\sum_{cyc} \frac{x}{\sqrt{x^2+4\sqrt{y}+4\sqrt{z}}}.$$
Nice Inequality, had a somewhat similar approach for Claim I to $\textbf{@WLOGQED1729's}$. Here is a simpler approach to Claim 2.
$\textbf{To prove:}$ $\sum_{\text{cyc}} \frac{x}{\sqrt{x^2+4\sqrt{y}+4\sqrt{z}}} \geq \sum_{\text{cyc}}\frac{x}{x+y+z}=1\iff \sqrt{x^2+4\sqrt{y}+4\sqrt{z}}\leq x+y+z $
We have
\begin{align*} (x+y+z)^2 &=x^2+(y^2+xy+yz+zx)+(z^2+xy+yz+zx)\\& \geq x^2+4\left(\sqrt[4]{(y^2)(xy)(yz)(zx)}+\sqrt[4]{(z^2)(xy)(yz)(zx)} \right)\\&=x^2+4\sqrt{y}+4\sqrt{z}\end{align*}