Problem

Source: Turkey MO 2004.

Tags: geometry, inequalities, parallelogram, inequalities solved, Geometric Inequalities



Let $ABCD$ be a convex quadrilateral and $K,L,M,N$ be points on $[AB],[BC],[CD],[DA]$, respectively. Show that, \[ \sqrt[3]{s_{1}}+\sqrt[3]{s_{2}}+\sqrt[3]{s_{3}}+\sqrt[3]{s_{4}}\leq 2\sqrt[3]{s} \] where $s_1=\text{Area}(AKN)$, $s_2=\text{Area}(BKL)$, $s_3=\text{Area}(CLM)$, $s_4=\text{Area}(DMN)$ and $s=\text{Area}(ABCD)$.