Find all continuous functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that \[(f(x)f(y)-1)f(x+y)=2f(x)f(y)-f(x)-f(y)\quad \forall x,y\in \mathbb{R}\]
Problem
Source: 2008 Bulgarian Autumn Math Competition, Problem 12.3
Tags: function, algebra, Functional equation in R, functional equation
18.03.2022 21:32
$f(x+y)=\frac{2f(x)f(y)-f(x)-f(y)}{f(x)f(y)-1}\Rightarrow$ $f(x+y)-1=\frac{f(x)f(y)-f(x)-f(y)+1}{f(x)f(y)-1}\Rightarrow$ $f(x+y)-1=\frac{(f(x)-1)(f(y)-1)}{f(x)f(y)-1}\Rightarrow$ let $g(x)=f(x)-1$ we have $g(x)$ is continuous and $g(x+y)=\frac{g(x)g(y)}{g(x)g(y)+g(x)+g(y)}\Rightarrow$ $\frac{1}{g(x+y)}=\frac{g(x)g(y)+g(x)+g(y)}{g(x)g(y)}\Rightarrow$ $\frac{1}{g(x+y)}=\frac{g(x)+g(y)}{g(x)g(y)}+1\Rightarrow$ $\frac{1}{g(x+y)}=\frac{1}{g(y)}+\frac{1}{g(x)}+1\Rightarrow$ now let $h(x)=\frac{1}{g(x)}+1$ so we have $h(x)$ is additive and continuous so we are done.
18.03.2022 21:58
D_Phoenix wrote: $f(x+y)=\frac{2f(x)f(y)-f(x)-f(y)}{f(x)f(y)-1}\Rightarrow$ $f(x+y)-1=\frac{f(x)f(y)-f(x)-f(y)+1}{f(x)f(y)-1}\Rightarrow$ $f(x+y)-1=\frac{(f(x)-1)(f(y)-1)}{f(x)f(y)-1}\Rightarrow$ let $g(x)=f(x)-1$ we have $g(x)$ is continuous and $g(x+y)=\frac{g(x)g(y)}{g(x)g(y)+g(x)+g(y)}\Rightarrow$ $\frac{1}{g(x+y)}=\frac{g(x)g(y)+g(x)+g(y)}{g(x)g(y)}\Rightarrow$ $\frac{1}{g(x+y)}=\frac{g(x)+g(y)}{g(x)g(y)}+1\Rightarrow$ $\frac{1}{g(x+y)}=\frac{1}{g(y)}+\frac{1}{g(x)}+1\Rightarrow$ now let $h(x)=\frac{1}{g(x)}+1$ so we have $h(x)$ is additive and continuous so we are done. You can't divide by $f(x)f(y)-1$ because it might be $0$ for some reals. The same can be said about the substitution $g(x)=f(x)-1$ and having $\frac{1}{g(x)}$. The ending isn't ok either as you haven't checked even the possible solution which might not be the only one by the way. Please review and correct your solution.
18.03.2022 22:24
oh u r right! sorry