Let $AC>BC$ in $\triangle ABC$ and $M$ and $N$ be the midpoints of $AC$ and $BC$ respectively. The angle bisector of $\angle B$ intersects $\overline{MN}$ at $P$. The incircle of $\triangle ABC$ has center $I$ and touches $BC$ at $Q$. The perpendiculars from $P$ and $Q$ to $MN$ and $BC$ respectively intersect at $R$. Let $S=AB\cap RN$. a) Prove that $PCQI$ is cyclic b) Express the length of the segment $BS$ with $a$, $b$, $c$ - the side lengths of $\triangle ABC$ .
Problem
Source: 2007 Bulgarian Autumn Math Competition, Problem 10.2
Tags: geometry, Cyclic, angle bisector