Problem

Source: Own. IMO 2022 Malaysian Training Camp 2

Tags: number theory



Given a four digit string $ k=\overline{abcd} $, $ a, b, c, d\in \{0, 1, \cdots, 9\} $, prove that there exist a $n<20000$ such that $2^n$ contains $k$ as a substring when written in base $10$. [Extra: Can you give a better bound? Mine is $12517$]