Problem

Source: CMO 2022 P5

Tags: geometry



A pentagon is inscribed in a circle, such that the pentagon has an incircle. All $10$ sets of $3$ vertices from the pentagon are chosen, and the incenters of each of the $10$ resulting triangles are drawn in. Prove these $10$ incenters lie on $2$ concentric circles. Note: I spent nearly no time on this, so if anyone took CMO and I misremembered just let me know.