Points $ B_1$ and $ B_2$ lie on ray $ AM$, and points $ C_1$ and $ C_2$ lie on ray $ AK$. The circle with center $ O$ is inscribed into triangles $ AB_1C_1$ and $ AB_2C_2$. Prove that the angles $ B_1OB_2$ and $ C_1OC_2$ are equal.
Problem
Source: I.F.Sharygin contest 2009 - Correspondence round - Problem 1
Tags: geometry proposed, geometry