Problem

Source: 2022 Sharygin CR p24

Tags: geometry, 3D geometry, pyramid, sphere



Let $OABCDEF$ be a hexagonal pyramid with base $ABCDEF$ circumscribed around a sphere $\omega$. The plane passing through the touching points of $\omega$ with faces $OFA$, $OAB$ and $ABCDEF$ meets $OA$ at point $A_1$, points $B_1$, $C_1$, $D_1$, $E_1$ and $F_1$ are defined similarly. Let $\ell$, $m$ and $n$ be the lines $A_1D_1$, $B_1E_1$ and $C_1F_1$ respectively. It is known that $\ell$ and $m$ are coplanar, also $m$ and $n$ are coplanar. Prove that $\ell$ and $n$ are coplanar.