Problem

Source: 2022 Sharygin CR p4

Tags: geometry, concurrency, concurrent



Let $AA_1$, $BB_1$, $CC_1$ be the altitudes of acute angled triangle $ABC$. $A_2$ be the touching point of the incircle of triangle $AB_1C_1$ with $B_1C_1$, points $B_2$, $C_2$ be defined similarly. Prove that the lines $A_1A_2$, $B_1B_2$, $C_1C_2$ concur.