Problem

Source: 2022 Sharygin CR p3

Tags: geometry, equal segments, right triangle



Let $CD$ be an altitude of right-angled triangle $ABC$ with $\angle C = 90$. Regular triangles$ AED$ and $CFD$ are such that $E$ lies on the same side from $AB$ as $C$, and $F$ lies on the same side from $CD$ as $B$. The line $EF$ meets $AC$ at $L$. Prove that $FL = CL + LD$