Problem

Source: Sharygin 2022 P14

Tags: geometry



A triangle $ABC$ is given. Let $C'$ and $C'_{a}$ be the touching points of sideline $AB$ with the incircle and with the excircle touching the side $BC$. Points $C'_{b}$, $C'_{c}$, $A'$, $A'_{a}$, $A'_{b}$, $A'_{c}$, $B'$, $B'_{a}$, $B'_{b}$, $B'_{c}$ are defined similarly. Consider the lengths of $12$ altitudes of triangles $A'B'C'$, $A'_{a}B'_{a}C'_{a}$, $A'_{b}B'_{b}C'_{b}$, $A'_{c}B'_{c}C'_{c}$. (a) (8-9) Find the maximal number of different lengths. (b) (10-11) Find all possible numbers of different lengths.