Problem

Source: Sharygin 2022 P17

Tags: geometry



Let a point $P$ lie inside a triangle $ABC$. The rays starting at $P$ and crossing the sides $BC$, $AC$, $AB$ under the right angle meet the circumcircle of $ABC$ at $A_{1}$, $B_{1}$, $C_{1}$ respectively. It is known that lines $AA_{1}$, $BB_{1}$, $CC_{1}$ concur at point $Q$. Prove that all such lines $PQ$ concur.