Problem

Source: Sharygin 2022 P20

Tags: geometry



Let $O$, $I$ be the circumcenter and the incenter of $\triangle ABC$; $R$,$r$ be the circumradius and the inradius; $D$ be the touching point of the incircle with $BC$; and $N$ be an arbitrary point of segment $ID$. The perpendicular to $ID$ at $N$ meets the circumcircle of $ABC$ at points $X$ and $Y$ . Let $O_{1}$ be the circumcircle of $\triangle XIY$. Find the product $OO_{1}\cdot IN$.