Problem

Source: Sharygin 2022 P19

Tags: geometry



Let $I$ be the incenter of triangle $ABC$, and $K$ be the common point of $BC$ with the external bisector of angle $A$. The line $KI$ meets the external bisectors of angles $B$ and $C$ at points $X$ and $Y$ . Prove that $\angle BAX = \angle CAY$