Problem

Source: 2015 Thailand October Camp Inequalities & Combinatorics Exam p2

Tags: inequalities, Sequence



Find the number of sequences $a_1,a_2,\dots,a_{100}$ such that $\text{(i)}$ There exists $i\in\{1,2,\dots,100\}$ such that $a_i=3$, and $\text{(ii)}$ $|a_i-a_{i+1}|\leq 1$ for all $1\leq i<100$.