Problem

Source: Sharygin CR P9(Grades 8-9)

Tags: Sharygin Geometry Olympiad, Sharygin 2022, geometry



The sides $AB, BC, CD$ and $DA$ of quadrilateral $ABCD$ touch a circle with center $I$ at points $K, L, M$ and $N$ respectively. Let $P$ be an arbitrary point of line $AI$. Let $PK$ meet $BI$ at point $Q, QL$ meet $CI$ at point $R$, and $RM$ meet $DI$ at point $S$. Prove that $P,N$ and $S$ are collinear.