The sides $AB, BC, CD$ and $DA$ of quadrilateral $ABCD$ touch a circle with center $I$ at points $K, L, M$ and $N$ respectively. Let $P$ be an arbitrary point of line $AI$. Let $PK$ meet $BI$ at point $Q, QL$ meet $CI$ at point $R$, and $RM$ meet $DI$ at point $S$.
Prove that $P,N$ and $S$ are collinear.
Oops, angle chase works, but there are cases about the configuration (or you can be smart, unlike me, and use directed angles).
There are differences in the construction and the angle chase for the cases if $P$ lies after point $I$ on $AI$, that is, the points are $A,I,P$ in that order on the line or in the order $A,P,I$ or in the order $P,A,I$. The ideas are very similar, but we'll at the different cases anyways (I've included diagrams in order to help see the cases more clearly). Firstly we'll consider the case $P,A,I$, that is, when $A\in PI$. Note that $AK=AN$, $BK=BL$, $CL=CM$, $DM=DN$ because in all these equalities the two segments are tangents to the circle inscribed in $ABCD$. Also, since $K,L,M,N$ are the touchpoints of the circle, let's call it $\Gamma$, with center $I$ and the sides $AB,BC,CD,DA$, this means that $IK\perp AB$, $IL\perp BC$, $IM\perp CD$, $IN\perp DA$. Combined with the equality of sides this gives that $\triangle AIK\cong \triangle AIN$, $\triangle BIK\cong \triangle BIL$, $\triangle CIL\cong\triangle CIM$, $\triangle DIM\cong \triangle DIN$. This also means that $N$ and $K$ are symmetric by the line $AI$, $K$ and $L$ are symmetric by the line $BI$, $L$ and $M$ are symmetric by the line $CI$, $M$ and $N$ are symmetric by the line $DI$. \newline\newline
Denote $\angle IAK = \angle IAN=\alpha$, $\angle IBA=\angle IBL=\beta$, $\angle ICL=\angle ICM=\gamma$, $\angle MDI=\angle NDI=\delta$ and $\angle IPK=x$. From $\triangle AIB$, $\triangle BIC$, $\triangle CID$, $\triangle DIA$ we have that:
$\angle AIB=180^{\circ}-\alpha-\beta$, $\angle BIC=180^{\circ}-\beta-\gamma$, $\angle CID=180^{\circ}-\gamma-\delta$ and $\angle DIA=180^{\circ}-\delta-\alpha$. Now in $\triangle PIQ$ we have that:
$$\angle IQP=180^{\circ}-\angle IPQ-\angle PIQ=180^{\circ}-x-(180^{\circ}-\alpha-\beta)=\alpha+\beta-x$$We mentioned that $K$ and $L$ are symmetric wrt line $BI$, but $K\in BI\Longrightarrow \angle IQL=\angle IQK=\angle IQP=\alpha+\beta-x$. Now in $\triangle QIR$ we have that:
$$\angle IRQ=180^{\circ}-\angle QIR-\angle IQR=180^{\circ}-(180^{\circ}-\beta-\gamma)-(\alpha+\beta-x)=\gamma-\alpha+x$$We mentioned that $L$ and $M$ are symmetric wrt line $CI$, but $R\in CI\Longrightarrow\angle MRI=\angle LRI=\angle IRQ=\gamma-\alpha+x$. Now in $\triangle RSI$ we have that:
$$\angle ISR=180^{\circ}=\angle IRS-\angle SIR=180^{\circ}-(\gamma-\alpha+x)-(180^{\circ}-\gamma-\delta)=\delta+\alpha-x$$We mentioned that $M$ and $N$ are symmetric wrt line $DI$, but $S\in DI\Longrightarrow \angle NSI=\angle MSI=\angle ISR=\delta+\alpha-x$. We also mentioned that $N$ and $K$ are symmetric wrt line $AI$, but $P\in AI\Longrightarrow \angle NPI=\angle KPI=x$. We mentioned that $IN\perp DA\Longrightarrow \angle AIN=180^{\circ}-\angle IAN-\angle INA=180^{\circ}-\alpha-90^{\circ}=90^{\circ}-\alpha$. Also, $\angle SIN=\angle DIA-\angle AIN=(180^{\circ}-\delta-\alpha)-(90^{\circ}-\alpha)=90^{\circ}-\delta$. Therefore in $\triangle PNI$ we have that:
$$\angle PNI=180^{\circ}-\angle NPI-\angle NIP=180^{\circ}-x-(90^{\circ}-\alpha)=90^{\circ}+\alpha-x$$In $\triangle SNI$ we have that:
$$\angle SNI=180^{\circ}-\angle NSI-\angle SIN=180^{\circ}-(\delta+\alpha-x)-(90^{\circ}-\delta)=90^{\circ}-\alpha+x$$$$\Longrightarrow \angle SNI+\angle PNI=(90^{\circ}-\alpha+x)+(90^{\circ}+\alpha-x)=180^{\circ}\Longrightarrow P,N,S\text{ are collinear}$$Thus we've solved the problem because $\angle SNI+\angle PNI=180^{\circ}$ when we're in the case $P,A,I$.
In the next cases we'll use the already made remarks, for example that $\angle KQI=\angle LQI$, $\angle LRI=\angle MRI$ etc. as these angle equalities are independent on the position of $P$. Also, we'll use the notation of angles as in this case, that is $\angle IAK = \angle IAN=\alpha$, $\angle IBA=\angle IBL=\beta$, $\angle ICL=\angle ICM=\gamma$, $\angle MDI=\angle NDI=\delta$ and $\angle IPK=x$.
$\textbf{Case 2}$ $P\in AI$
$$\angle IQP=180^{\circ}-\angle IPK-\angle PIK=180^{\circ}-x-(180^{\circ}-\alpha-\beta)=\alpha+\beta-x$$$$\angle IRQ=180^{\circ}-\angle QIR-\angle IQR=180^{\circ}-(180^{\circ}-\beta-\gamma)-(\alpha+\beta-x)=\gamma-\alpha+x$$$$\angle ISR=180^{\circ}=\angle IRS-\angle SIR=180^{\circ}-(\gamma-\alpha+x)-(180^{\circ}-\gamma-\delta)=\delta+\alpha-x$$We have that $\angle NPI=\angle KPI=x$. We mentioned that $IN\perp DA\Longrightarrow \angle AIN=180^{\circ}-\angle IAN-\angle INA=180^{\circ}-\alpha-90^{\circ}=90^{\circ}-\alpha$. Also, $\angle SIN=\angle DIA-\angle AIN=(180^{\circ}-\delta-\alpha)-(90^{\circ}-\alpha)=90^{\circ}-\delta$. Therefore in $\triangle PNI$ we have that:
$$\angle PNI=180^{\circ}-\angle NPI-\angle NIP=180^{\circ}-x-(90^{\circ}-\alpha)=90^{\circ}+\alpha-x$$In $\triangle SNI$ we have that:
$$\angle SNI=180^{\circ}-\angle NSI-\angle SIN=180^{\circ}-(\delta+\alpha-x)-(90^{\circ}-\delta)=90^{\circ}-\alpha+x$$$$\Longrightarrow \angle SNI+\angle PNI=(90^{\circ}-\alpha+x)+(90^{\circ}+\alpha-x)=180^{\circ}\Longrightarrow P,N,S\text{ are collinear}$$$\textbf{Note:}$ This case is solved with the same angle chase as in the first case.
$\textbf{Case 3}$ $I\in AP$, $I\in CR$. We have that:
$$\angle QLB=\angle QKB=\angle PKB=\angle KAP+\angle KPA=\alpha+x$$$$\angle CRM=\angle CRL=\angle QLB-\angle RCL=(\alpha+x)-\gamma=\alpha-\gamma+x$$$$\angle DNS=\angle DMS=\angle MCR+\angle MRC=\gamma+(\alpha-\gamma+x)=\alpha+\gamma$$$$\angle DNP=\angle NAP+\angle NPA=\alpha+x$$$$\Longrightarrow \angle DNS=\angle DNP\Longrightarrow P,N,S\text{ are collinear}$$
$\textbf{Case 4}$ $I\in AP$, $C\in IR$. We have that:
$$\angle QLB=\angle QKB=\angle KPA+\angle KAP=\alpha+x$$$$\angle MRI=\angle LRI=\angle ICL-\angle CLR=\gamma-\angle QLB=\gamma-\alpha-x$$$$\angle DNS=\angle DMS=\angle CMR=\angle MCI-\angle MRC=\gamma-(\gamma-\alpha-x)=\alpha+x$$$$\angle DNP=\angle NPA+\angle NAP=\angle APK+\alpha=x+\alpha$$$$\Longrightarrow \angle DNS=\alpha+x=\angle DNP\Longrightarrow P,N,S\textbf{ are collinear}$$
The case $I\in AP$, $R\in CI$ doesn't exist as if $R\in CI$, then $B\in IQ$, bu then $P\in AI$, contradiction, thus no such construction exists.
$\textbf{Case 5}$ $P\equiv A$. In this case $Q\equiv B$, $C\equiv R$, $D\equiv S$, so $P,N,S$ are $A,N,D$ which are collinear as we know that $N$ lies on $AD$, because $N$ is the touchpoint of the inscribed circle with center $I$ to side $AD$.
$\textbf{Case 6}$ $P\equiv I$. Here $I\equiv P\equiv Q\equiv R\equiv S$, so $P\equiv S$, so $P,N,S$ trivially lie on the line $IN$.
Thus we've looked at all cases and proved all of them, so the problem is solved.
$\textbf{Complex bash solution}$ I've provided a solution above, but I just wanted to show a second one, which is achieved using complex numbers. It's more convenient, because we can avoid the different cases. Here is the solution:\newline\newline
We'll use complex numbers. We'll denote the complex number of a point with the lower case letter. Let $i=0$, that is, $I$ is the origin of the complex plane and $(KLMN)$ be the unit circle. Then we have:
$$\overline{k}=\frac{1}{k}\quad,\quad \overline{l}=\frac{1}{l}\quad,\quad \overline{m}=\frac{1}{m}\quad,\quad \overline{n}=\frac{1}{n}$$By the intersections of tangents to the circumcircle formula (that is, if $a,b$ lie on the unit circle, then the intersection of the tangents at $A$ and $B$ to the unit circle is given by $\frac{2ab}{a+b}$):
$$\boxed{a=\frac{2nk}{n+k}}\quad, \quad \boxed{b=\frac{2kl}{k+l}}\quad, \quad \boxed{c=\frac{2ml}{m+l}}\quad, \quad \boxed{d=\frac{2mn}{m+n}}$$$$P\in AI\Longrightarrow \overline{p}=\frac{p}{nk}$$$$Q\in BI\Longrightarrow \overline{q}=\frac{q}{kl}$$$$R\in AI\Longrightarrow \overline{r}=\frac{r}{lm}$$$$S\in DI\Longrightarrow \overline{s}=\frac{s}{mn}$$$$Q\in RK\Longrightarrow (\overline{p}-\overline{k})q-(p-k)\overline{q}+p\overline{k}-\overline{p}k=0$$$$\Longrightarrow \left(\frac{p}{nk}-\frac{1}{k}\right)q-(p-k)\frac{q}{kl}+\frac{p}{k}-\frac{p}{n}=0$$$$\Longrightarrow (pl-nl)q-(p-k)nq+pnl-pkl=0$$$$\Longrightarrow \boxed{q=\frac{pkl-pnl}{-nl-pn+pl+kn}}$$$$R\in QL\Longrightarrow (\overline{q}-\overline{l})r-(q-l)\overline{r}+q\overline{l}-\overline{q}l=0$$$$\Longrightarrow \left(\frac{q}{kl}-\frac{1}{l}\right)r-(q-l)\frac{r}{lm}+\frac{q}{l}-\frac{q}{k}=0$$$$\Longrightarrow (qm-km)r-(q-l)kr+qkm-qlm=0$$$$\Longrightarrow \boxed{r=\frac{qlm-qkm}{-km-qk+qm+kl}}$$$$S\in RM\Longrightarrow \boxed{s=\frac{rn(m-l)}{-ln-rl+rn+lm}}$$$$S\in PN\iff (\overline{p}-\overline{n})s-(p-n)\overline{s}+p\overline{n}-\overline{p}n=0$$$$\iff \left(\frac{p}{nk}-\frac{1}{n}\right)s-(p-n)\frac{s}{mn}+\frac{p}{n}-\frac{p}{k}=0$$$$\iff (mp-mk)s-(pk-nk)s+pmk-pmn=0$$$$\iff s=\frac{pmn-pmk}{-mk-pk+mp+nk}$$$$\iff \frac{pmn-pmk}{-mk-pk+mp+nk}=\frac{rn(m-l)}{-ln-rl+rn+lm}$$$$\iff (pmn-pmk)(ln+rl-rn-lm)=(rmn-rnl)(mk+pk-mp-nk)$$$$\iff (m-n)(klmp+klnr-klpr-kmnr-lmnp+mnpr)=0$$$$\iff r=\frac{lmnp-klmp}{kln-klp-kmn+mnp}$$$$\iff \frac{qlm-qkm}{-km-qk+qm+kl}=\frac{lmnp-klmp}{kln-klp-kmn+mnp}$$$$\iff \frac{ql-qk}{-km-qk+qm+kl}=\frac{lnp-klp}{kln-klp-kmn+mnp}$$$$\iff k(l-m)(klp-knq-lnp+lnq-lpq+npq)=0$$$$\iff q=\frac{klp-lnp}{kn-ln+lp-np}$$However, we got exactly that for $q$, so $P,N,S$ are collinear and the problem is solved.
One liner solution using symmetry and angle chase-
$$\angle ANP=\angle AKP=\angle BKQ=\angle BLQ=\angle RLC=\angle RMC=\angle DMS=\angle SND$$$$\implies \angle ANP=\angle SND$$from which the result directly follows
Notice that while $P$ moves on $AI$, $P\stackrel{K}{\mapsto}Q\stackrel{L}{\mapsto}R\stackrel{M}{\mapsto}S$ is projective.
Also define $S'$ as the intersection of $NP$ and $DI$. $P\stackrel{N}{\mapsto}S'$ is also projective.
To show this two projective maps coincide for all $P$, three cases are enough.
$P=A \Rightarrow S=S'=D$
$P=I \Rightarrow S=S'=I$
third case is when $P=AI\cap NM$
In this case we want to show $R$ lies on $NM$ too than $S=S'=DI\cap NM$
But $R$ lies on $NM$ since desarg on triangles $RPI$ and $LKB$ knowing that $NM$ $KL$ $ AC$ are concurrent