Problem

Source: Sharygin CR P8(Grades 8-9)

Tags: Sharygin Geometry Olympiad, Sharygin 2022, geometry



Points $P,Q,R$ lie on the sides $AB,BC,CA$ of triangle $ABC$ in such a way that $AP=PR, CQ=QR$. Let $H$ be the orthocenter of triangle $PQR$, and $O$ be the circumcenter of triangle $ABC$. Prove that $$OH||AC$$.