Problem

Source: Bangladesh Mathematical Olympiad 2021 Problem 12

Tags: algebra, functional equation



A function $g: \mathbb{Z} \to \mathbb{Z}$ is called adjective if $g(m)+g(n)>max(m^2,n^2)$ for any pair of integers $m$ and $n$. Let $f$ be an adjective function such that the value of $f(1)+f(2)+\dots+f(30)$ is minimized. Find the smallest possible value of $f(25)$.