Problem

Source: Bangladesh Mathematical Olympiad 2021 Problem 9

Tags: number theory, combinatorics



A positive integer $n$ is called nice if it has at least $3$ proper divisors and it is equal to the sum of its three largest proper divisors. For example, $6$ is nice because its largest proper divisors are $3,2,1$ and $6=3+2+1$. Find the number of nice integers not greater than $3000$.