Let $\triangle ABC$ be an acute-angled triangle with $AB<AC$ and let $(c)$ be its circumcircle with center $O$. Let $M$ be the midpoint of $BC$. The line $AM$ meets the circle $(c)$ again at the point $D$. The circumcircle $(c_1)$ of triangle $\triangle MDC$ intersects the line $AC$ at the points $C$ and $I$, and the circumcircle $(c_2)$ of $\triangle AMI$ intersects the line $AB$ at the points $A$ and $Z$. If $N$ is the foot of the perpendicular from $B$ on $AC$, and $P$ is the second point of intersection of $ZN$ with $(c_2)$, prove that the quadrilateral with vertices the points $N, P, I$ and $M$ is a parallelogram.