Let $ABC$ be an acute-angled triangle, and let $D, E$ and $K$ be the midpoints of its sides $AB, AC$ and $BC$ respectively. Let $O$ be the circumcentre of triangle $ABC$, and let $M$ be the foot of the perpendicular from $A$ on the line $BC$. From the midpoint $P$ of $OM$ we draw a line parallel to $AM$, which meets the lines $DE$ and $OA$ at the points $T$ and $Z$ respectively. Prove that: (a) the triangle $DZE$ is isosceles (b) the area of the triangle $DZE$ is given by the formula \[E_{DZE}=\frac{BC\cdot OK}{8}\]