Bristy wants to build a special set $A$. She starts with $A=\{0, 42\}$. At any step, she can add an integer $x$ to the set $A$ if it is a root of a polynomial which uses the already existing integers in $A$ as coefficients. She keeps doing this, adding more and more numbers to $A$. After she eventually runs out of numbers to add to $A$, how many numbers will be in $A$?