We call a permutation of the numbers $1$, $2$, $3$, $\dots$ , $n$ 'kawaii' if there is exactly one number that is greater than its position. For example: $1$, $4$, $3$, $2$ is a kawaii permutation (when $n=4$) because only the number $4$ is greater than its position $2$. How many kawaii permutations are there if $n=14$?