Problem

Source: 2022 Taiwan Mathematics Olympiad

Tags: number theory, Taiwan



Let $x,y,z$ be three positive integers with $\gcd(x,y,z)=1$. If \[x\mid yz(x+y+z),\]\[y\mid xz(x+y+z),\]\[z\mid xy(x+y+z),\]and \[x+y+z\mid xyz,\]show that $xyz(x+y+z)$ is a perfect square. Proposed by usjl