Problem

Source: Bangladesh Mathematical Olympiad 2020 Problem 3

Tags: geometry



Let $R$ be the set of all rectangles centered at the origin and with perimeter $1$ (the center of a rectangle is the intersection point of its two diagonals). Let $S$ be a region that contains all of the rectangles in $R$ (region $A$ contains region $B$, if $B$ is completely inside of $A$). The minimum possible area of $S$ has the form $\pi a$, where $a$ is a real number. Find $1/a$.