Problem

Source: IZhO 2022 Day 2 Problem 5

Tags: algebra, polynomial



A polynomial $f(x)$ with real coefficients of degree greater than $1$ is given. Prove that there are infinitely many positive integers which cannot be represented in the form \[f(n+1)+f(n+2)+\cdots+f(n+k)\]where $n$ and $k$ are positive integers.