Problem

Source: Brazil National Olympiad Junior 2021 #9

Tags: floor function, algebra



Let $\alpha\geq 1$ be a real number. Define the set $$A(\alpha)=\{\lfloor \alpha\rfloor,\lfloor 2\alpha\rfloor, \lfloor 3\alpha\rfloor,\dots\}$$Suppose that all the positive integers that does not belong to the $A(\alpha)$ are exactly the positive integers that have the same remainder $r$ in the division by $2021$ with $0\leq r<2021$. Determine all the possible values of $\alpha$.