Problem

Source: Brazil National Olympiad Junior 2021 #7

Tags: geometry



Let $ABC$ be a triangle with $\angle ABC=90^{\circ}$. The square $BDEF$ is inscribed in $\triangle ABC$, such that $D,E,F$ are in the sides $AB,CA,BC$ respectively. The inradius of $\triangle EFC$ and $\triangle EDA$ are $c$ and $b$, respectively. Four circles $\omega_1,\omega_2,\omega_3,\omega_4$ are drawn inside the square $BDEF$, such that the radius of $\omega_1$ and $\omega_3$ are both equal to $b$ and the radius of $\omega_2$ and $\omega_4$ are both equal to $a$. The circle $\omega_1$ is tangent to $ED$, the circle $\omega_3$ is tangent to $BF$, $\omega_2$ is tangent to $EF$ and $\omega_4$ is tangent to $BD$, each one of these circles are tangent to the two closest circles and the circles $\omega_1$ and $\omega_3$ are tangents. Determine the ratio $\frac{c}{a}$.