Problem

Source:

Tags: combinatorics, geometry, romania, EGMO



On a board there is a regular polygon $A_1A_2\ldots A_{99}.$ Ana and Barbu alternatively occupy empty vertices of the polygon and write down triangles on a list: Ana only writes obtuse triangles, while Barbu only writes acute ones. At the first turn, Ana chooses three vertices $X,Y$ and $Z$ and writes down $\triangle XYZ.$ Then, Barbu chooses two of $X,Y$ and $Z,$ for example $X$ and $Y$, and an unchosen vertex $T$, and writes down $\triangle XYT.$ The game goes on and at each turn, the player must choose a new vertex $R$ and write down $\triangle PQR$, where $P$ is the last vertex chosen by the other player, and $Q$ is one of the other vertices of the last triangle written down by the other player. If one player cannot perform a move, then the other one wins. If both people play optimally, determine who has a winning strategy.