Problem

Source:

Tags: romania, EGMO, number theory, function



For every positive integer $N\geq 2$ with prime factorisation $N=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$ we define \[f(N):=1+p_1a_1+p_2a_2+\cdots+p_ka_k.\]Let $x_0\geq 2$ be a positive integer. We define the sequence $x_{n+1}=f(x_n)$ for all $n\geq 0.$ Prove that this sequence is eventually periodic and determine its fundamental period.