Let $ABCD$ be a convex quadrilateral and let $O$ be the intersection of its diagonals. Let $P,Q,R,$ and $S$ be the projections of $O$ on $AB,BC,CD,$ and $DA$ respectively. Prove that \[2(OP+OQ+OR+OS)\leq AB+BC+CD+DA.\]
Source:
Tags: romania, EGMO, geometry, Inequality
Let $ABCD$ be a convex quadrilateral and let $O$ be the intersection of its diagonals. Let $P,Q,R,$ and $S$ be the projections of $O$ on $AB,BC,CD,$ and $DA$ respectively. Prove that \[2(OP+OQ+OR+OS)\leq AB+BC+CD+DA.\]