Problem

Source:

Tags: romania, EGMO, algebra, combinatorics



A finite set $M$ of real numbers has the following properties: $M$ has at least $4$ elements, and there exists a bijective function $f:M\to M$, different from the identity, such that $ab\leq f(a)f(b)$ for all $a\neq b\in M.$ Prove that the sum of the elements of $M$ is $0.$