Problem

Source: Brazilian Mathematical Olympiad 2021, Level 3, Problem 2

Tags: combinatorics, Brazilian Math Olympiad, Brazil, board



Let \(n\) be a positive integer. On a \(2 \times 3 n\) board, we mark some squares, so that any square (marked or not) is adjacent to at most two other distinct marked squares (two squares are adjacent when they are distinct and have at least one vertex in common, i.e. they are horizontal, vertical or diagonal neighbors; a square is not adjacent to itself). (a) What is the greatest possible number of marked square? (b) For this maximum number, in how many ways can we mark the squares? configurations that can be achieved through rotation or reflection are considered distinct.