Problem

Source: Brazilian Mathematical Olympiad 2021, Level 3, Problem 1

Tags: geometry, Brazilian Math Olympiad, Brazil, convex quadrilateral



Let \(ABCD\) be a convex quadrilateral in the plane and let \(O_{A}, O_{B}, O_{C}\) and \(O_{D}\) be the circumcenters of the triangles \(BCD, CDA, DAB\) and \(ABC\), respectively. Suppose these four circumcenters are distinct points. Prove that these points are not on a same circle.