Problem

Source: Kyiv City MO 2022 Round 2, Problem 11.3

Tags: number theory, permutations, algebra



Find the largest $k$ for which there exists a permutation $(a_1, a_2, \ldots, a_{2022})$ of integers from $1$ to $2022$ such that for at least $k$ distinct $i$ with $1 \le i \le 2022$ the number $\frac{a_1 + a_2 + \ldots + a_i}{1 + 2 + \ldots + i}$ is an integer larger than $1$. (Proposed by Oleksii Masalitin)