Does there exist a quadratic trinomial $ax^2 + bx + c$ such that $a, b, c$ are odd integers, and $\frac{1}{2022}$ is one of its roots?
Source: Kyiv City MO 2022 Round 1, Problem 10.1
Tags: algebra, quadratic trinomial
Does there exist a quadratic trinomial $ax^2 + bx + c$ such that $a, b, c$ are odd integers, and $\frac{1}{2022}$ is one of its roots?