Problem

Source: Kyiv City MO 2022 Round 1, Problem 9.5

Tags: Tournament, combinatorics



$n\ge 2$ teams participated in an underwater polo tournament, each two teams played exactly once against each other. A team receives $2, 1, 0$ points for a win, draw, and loss correspondingly. It turned out that all teams got distinct numbers of points. In the final standings, the teams were ordered by the total number of points. A few days later, organizers realized that the results in the final standings were wrong due to technical issues: in fact, each match that ended with a draw according to them in fact had a winner, and each match with a winner in fact ended with a draw. It turned out that all teams still had distinct number of points! They corrected the standings and ordered them by the total number of points. For which $n$ could the correct order turn out to be the reversed initial order? (Proposed by Fedir Yudin)