What's the smallest possible value of $$\frac{(x+y+|x-y|)^2}{xy}$$over positive real numbers $x, y$?
Source: Kyiv City MO 2022 Round 1, Problem 9.1
Tags: algebra, inequalities
What's the smallest possible value of $$\frac{(x+y+|x-y|)^2}{xy}$$over positive real numbers $x, y$?