Problem

Source: 3rd Memorial Mathematical Competition "Aleksandar Blazhevski - Cane"- Junior D1 P3/ Senior D1 P2

Tags: Inequality, n variables, strict, Summations, algebra



Given an integer $n\geq2$, let $x_1<x_2<\cdots<x_n$ and $y_1<y_2<\cdots<y_n$ be positive reals. Prove that for every value $C\in (-2,2)$ (by taking $y_{n+1}=y_1$) it holds that $\hspace{122px}\sum_{i=1}^{n}\sqrt{x_i^2+Cx_iy_i+y_i^2}<\sum_{i=1}^{n}\sqrt{x_i^2+Cx_iy_{i+1}+y_{i+1}^2}$. Proposed by Mirko Petrusevski