Problem

Source: Turkey Junior National Olympiad 2021 P2

Tags: combinatorics, combinatorics proposed



We are numbering the rows and columns of a $29 \text{x} 29$ chess table with numbers $1, 2, ..., 29$ in order (Top row is numbered with $1$ and first columns is numbered with $1$ as well). We choose some of the squares in this chess table and for every selected square, we know that there exist at most one square having a row number greater than or equal to this selected square's row number and a column number greater than or equal to this selected square's column number. How many squares can we choose at most?