Problem

Source: 2021 Saudi Arabia Training Lists p23 https://artofproblemsolving.com/community/c2758131_2021_saudi_arabia_training_tests

Tags: geometry, circumcircle, parallelogram, inradius, symmedian point



Let $ABC$ be triangle with the symmedian point $L$ and circumradius $R$. Construct parallelograms $ ADLE$, $BHLK$, $CILJ$ such that $D,H \in AB$, $K, I \in BC$, $J,E \in CA$ Suppose that $DE$, $HK$, $IJ$ pairwise intersect at $X, Y,Z$. Prove that inradius of $XYZ$ is $\frac{R}{2}$ .